10/8/21, 6:57 AM Controls and Dashboards | Charts | Google Developers

Controls and Dashboards =«

On this page, you'll see how to combine multiple charts into dashboards and give users controls to manipulate what data they show.

Overview

Dashboards are a simple way to organize together and manage multiple charts that share the same underlying data. By using the APIs
described in this page, you can free yourself from the burden of wiring together and coordinating all the charts that are part of a
dashboard.

Dashboards are defined using google.visualization.Dashboard (#dashboardobject) classes. Dashboard instances receive a
DataTable containing the data to visualize and take care of drawing and distributing the data to all the charts that are part of the
dashboard.

Controls are user interface widgets (such as category pickers, range sliders, autocompleters...) you interact with in order to drive the
data managed by a dashboard and the charts that are part of it.

Controls are defined using google.visualization.ControlWrapper (#controlwrapperobject) classes. You can add ControlWrapper
instances to a dashboard, where they behave like pipes and valves in a plumbing system. They collect user input and use the
information to decide which of the data the dashboard is managing should be made available to the charts that are part of it.

Have a look at the following example where a category picker and a range slider are used to drive the data visualized by a pie chart.

Donuts eaten per person

\ge Filter: Gender Selection:

3.0@8 854.0 Choose a value... ~

Name Gender Age Donuts eaten

Michael Male 12
Elisa Female 20
Robert Male 7
John Male 54
Jessica Female 22

Aaron Male 3

Marg

The dashboard is interactive. Try operating the controls and see the chart change in real time.

MargarethFemale 42

A 0 = OON W NN u,

Miranda Female 33

Using Controls and Dashboards
Here are the key steps for creating a dashboard and embedding it in your page. You'll find a code snippet demonstrating all these steps

halaw fallawed hv detailed infarmation about each step.

<

https://developers-dot-devsite-v2-prod.appspot.com/chart/interactive/docs/gallery/controls.html 1/22

10/8/21, 6:57 AM Controls and Dashboards | Charts | Google Developers

1. Create an HTML skeleton for your dashboard (#skeleton). Your page must have as many HTML elements as needed to hold every
member of a dashboard. This includes the dashboard itself and all the controls and charts that are part of it. Typically you'll use a
<div> for each one.

2. Load your libraries (#load_your_libraries). A dashboard requires only two libraries to be included or loaded on the page: the Google
AJAX API and the Google Visualization controls package.

3. Prepare your data (#preparedata). You'll need to prepare the data to visualize; this means either specifying the data yourself in
code, or querying a remote site for data.

4. Create a dashboard instance (#create_dashboard). Instantiate your dashboard by calling its constructor and passing in a reference
to the <div> element that will hold it.

5. Create as many controls and charts instances as you need (#create_controls). Create google.visualization.ChartWrapper and
google.visualization.ControlWrapper instances to describe each chart and control that the dashboard manages.

6. Establish dependencies (#establish_dependencies). Call bind () on your dashboard and pass in the control and chart instances to let
the dashboard know what to manage. Once a control and chart are bound together, the dashboard updates the chart to match the
constraints the control enforces over the data.

7. Draw your dashboard (#draw_dashboard). Call draw() on your dashboard and pass in your data to draw the entire dashboard on the
page.

8. Programmatic changes after draw (#programmatic_change). Optionally, after the initial draw you can programmatically drive the
controls that are part of the dashboard, and have the dashboard update the charts in response to that.

Here's a simple example of a page that creates a simple dashboard with a range slider driving a pie chart. The resulting dashboard is
shown below the snippet.

<html>
<head>
<!--Load the AJAX API-->
<script type="text/javascript" src="https://www.gstatic.com/charts/loader.js"></script>
<script type="text/javascript">

// Load the Visualization API and the controls package.
google.charts.load('current', {'packages':['corechart', 'controls']});

// Set a callback to run when the Google Visualization API is loaded.
google.charts.setOnLoadCallback(drawDashboard) ;

// Callback that creates and populates a data table,

// instantiates a dashboard, a range slider and a pie chart,
// passes in the data and draws it.

function drawDashboard() {

// Create our data table.
var data = google.visualization.arrayToDataTable([
['Name', 'Donuts eaten'],
['Michael' , 51,
['Elisa', 7],
['Robert', 31,
["John', 2],
['Jessica', 6],
['Aaron', 1],
['Margareth', 8]
1)

// Create a dashboard.
var dashboard = new google.visualization.Dashboard(
ById('dashboard_div'));

// Create a range slider, passing some options

https://developers-dot-devsite-v2-prod.appspot.com/chart/interactive/docs/gallery/controls.html 2/22

10/8/21, 6:57 AM Controls and Dashboards | Charts | Google Developers

var donutRangeSlider = new google.visualization.ControlWrapper ({
‘controlType': 'NumberRangeFilter',

'containerId': 'filter_div',
"options': {

'filterColumnLabel': 'Donuts eaten'
}

3

// Create a pie chart, passing some options
var pieChart = new google.visualization.ChartWrapper ({
‘chartType': 'PieChart’

'containerId': 'chart_div',

"options': {
'width': 300,
"height': 300,
'pieSliceText': 'value',
‘legend’: 'right’

}

2

// Establish dependencies, declaring that 'filter' drives 'pieChart’,
// so that the pie chart will only display entries that are let through
// given the chosen slider range.

dashboard.bind(donutRangeSlider, pieChart);

// Draw the dashboard.
dashboard.draw(data);
}
</script>
</head>

<body>
<!--Div that will hold the dashboard-->
<div id="dashboard_div">
<!--Divs that will hold each control and chart-->
<div id="filter_div"></div>
<div id="chart_div"></div>
</div>
</body>
</html>

Here's the dashboard that this code creates.

Donuts eaten

1.088 @s.0

@ Michael

@ Elisa
Robert

@® John

@ Jessica

@® Aaron

@ Margareth

https://developers-dot-devsite-v2-prod.appspot.com/chart/interactive/docs/gallery/controls.html 3/22

10/8/21, 6:57 AM Controls and Dashboards | Charts | Google Developers

1. Create An HTML Skeleton For Your Dashboard

Your page must have as many HTML elements (typically <div>s) to hold both the dashboard itself and all the controls and charts part of
it. When instantiating dashboard, control, and chart instances, you must pass a reference to their element, so assign an ID to each
HTML element.

<!--Div that will hold the dashboard-->

<div id="dashboard_div">
<!--Divs that will hold each control and chart-->
<div id="filter_div"></div>
<div id="chart_div"></div>

</div>

You are free to position each HTML element however you want your dashboard to look.

2. Load Your Libraries

A dashboard requires only two libraries to be included or loaded on the page: the Google AJAX API and the Google Visualization
controls package. The API (in particular, google.visualization.ChartWrapper) automatically identifies the other packages needed
(for example, gauge if you are using a Gauge chart) and loads them on the fly without further intervention from you.

You must use google.charts.load() to fetch the control library.
<!--Load the AJAX API-->
<script type="text/javascript" src="https://www.gstatic.com/charts/loader.js"></script>
<script type="text/javascript">
// Load the Visualization API and the controls package.
// Packages for all the other charts you need will be loaded
// automatically by the system.

google.charts.load('current', {'packages':['corechart', 'controls']});

// Set a callback to run when the Google Visualization API is loaded.
google.charts.setOnLoadCallback(drawDashboard);

function drawDashboard()

// Everything is loaded. Assemble your dashboard...
}

</script>

3. Prepare Your Data

When the Visualization APl has been loaded, google.charts.setOnLoadCallback () will call your handler function, so you know that
all the required helper methods and classes will be ready for you to start preparing your data.

Dashboards accepts data in a DataTable, the same as charts.

4. Create A Dashboard Instance

After you have created your data, you can instantiate your dashboard object. A dashboard constructor takes one parameter: a reference
to the DOM element in which to draw the dashboard.

sualization.Dashboard(document.getElementById('dashboard_div'));

https://developers-dot-devsite-v2-prod.appspot.com/chart/interactive/docs/gallery/controls.html

4/22

10/8/21, 6:57 AM Controls and Dashboards | Charts | Google Developers

Dashboards are exposed as a Javascript class. After instantiating your dashboard, you can perform a few optional steps such as
adding event listeners (for example, to be notified once the dashboard is 'ready'). Dashboards handle events in the same way charts do,

(/chart/interactive/docs/reference#errordisplay) in the chart section for more information.

5. Create Control And Chart Instances

Define as many instances you need for each control and chart that will be part of the dashboard. Use
google.visualization.ChartWrapper (/chart/interactive/docs/reference#chartwrapperobject) and

google.visualization.ControlWrapper (#controlwrapperobject) to define charts and controls respectively.

// Create a range slider, passing some options
var donutRangeSlider = new google.visualization.ControlWrapper ({
‘controlType': 'NumberRangeFilter',

'containerId': 'filter_div',
"options': {

"filterColumnLabel': 'Donuts eaten'
}

3

// Create a pie chart, passing some options
var pieChart = new google.visualization.ChartWrapper ({
'chartType': 'PieChart’,

'containerId': 'chart_div',
'options': {
'width': 300,
"height': 300,
'pieSliceText': 'label’
}
)5

When creating ChartWrapper and ControlWrapper instances, do not specify either the dataTable or the dataSourceUrl parameter.

The dashboard takes care of feeding each one with the appropriate data. However, be sure to specify the required parameters:
chartType and containerId for charts, controlType and containerId for controls.

A few tips about configuring controls and charts:

* You must give all controls a filterColumnIndex (or filterColumnLabel) to specify which column of your

google.visualization.DataTable the control operates on (in the example above, the control operates on the column labeled

Donuts eaten),

¢ Use the state configuration option on controls to initialize them with an explicit state when they are first drawn. For example, use

this setting to fix the initial positions of the thumbs of a range slider control.

var donutRangeSlider = new google.visualization.ControlWrapper ({
‘controlType': 'NumberRangeFilter',

"containerId': 'filter_div',
‘options': {
'filterColumnLabel': 'Donuts eaten',

‘minValue': 1,
‘maxValue': 10
Bo
// Explicitly positions the thumbs at position 3 and 8,
// out of the possible range of 1 to 10.
'state': {'lowValue': 3, 'highValue': 8}
1Y) ©

https://developers-dot-devsite-v2-prod.appspot.com/chart/interactive/docs/gallery/controls.html

5/22

https://developers-dot-devsite-v2-prod.appspot.com/chart/interactive/docs/events
https://developers-dot-devsite-v2-prod.appspot.com/chart/interactive/docs/reference#errordisplay
https://developers-dot-devsite-v2-prod.appspot.com/chart/interactive/docs/reference#chartwrapperobject

10/8/21, 6:57 AM Controls and Dashboards | Charts | Google Developers

¢ All the charts that are part of a dashboard share the same underlying dataTable you prepared in the Prepare Your Data
(#preparedata) step. However, charts often require a specific arrangement of columns to display correctly: for example, a pie chart
requires a string column for the label, followed by a number column for the value.

Use the view option while configuring each ChartWrapper instance to declare which columns are relevant for the chart, as in the
following example.

var data = google.visualization.arrayToDataTable([
['Name', 'Gender', 'Age', 'Donuts eaten'],
['Michael' , 'Male', 12, 5],
['Elisa', 'Female', 20, 7],
['Robert', 'Male', 7, 3],
['John', 'Male', 54, 2],
['Jessica', 'Female', 22, 6],
['Aaron', 'Male', 3, 1],
['Margareth', 'Female', 42, 8]
1)

var pieChart = new google.visualization.ChartWrapper ({
‘chartType': 'PieChart’

"containerId': 'chart_div'
‘options': {

"width': 300,

"height': 3600,

'title': 'Donuts eaten per person'

Yo

// The pie chart will use the columns 'Name' and 'Donuts eaten'
// out of all the available ones.

'view': {'columns': [0, 3]}

b)) 6

// The rest of dashboard configuration follows
//

6. Establish Dependencies

Once you have instantiated both the dashboard and all the controls and charts that will be part it, use the bind () method to tell the
dashboard about the dependencies that exist between controls and charts.

Once a control and chart are bound together, the dashboard updates the chart to match the constraints the control enforces over the
data. In the example dashboard you are building, the range slider and the pie chart are bound together, so whenever you interact with
the former, the latter updates to display only the data that matches the selected range.

// 'pieChart' will update whenever you interact with 'donutRangeSlider'
// to match the selected range.
dashboard.bind(donutRangeSlider, pieChart);

You can bind controls and charts in many different configurations: one-to-one, one-to-many, many-to-one and many-to-many. Whenever
multiple controls are bound to a chart, the dashboard updates the chart to match the combined constraints enforced by all the bound
controls. At the same time, a control can drive multiple charts concurrently. To specify multiple bindings at the same time, pass in
arrays to the bind () method instead of single instances. You can also chain multiple bind() calls together. Here are some examples.

/1 Manv-tn-nna hindinn whara 'ggeSelector' and 'salarySelector' concurrently
hich data 'ageVsSalaryScatterPlot' visualizes.
laryPicker], ageVsSalaryScatterPlot);

https://developers-dot-devsite-v2-prod.appspot.com/chart/interactive/docs/gallery/controls.html 6/22

10/8/21, 6:57 AM Controls and Dashboards | Charts | Google Developers

// One-to-many binding where 'ageSelector' drives two charts.
dashboard.bind(agePicker, [ageVsSalaryScatterPlot, ageBarChart]);

// bind() chaining where each control drives its own chart.
dashboard.bind(agePicker, ageBarChart).bind(salaryRangePicker, salaryPieChart);

For advanced usages, you can also bind controls to other controls to establish chains of dependencies .

dashboard.bind(countryPicker, regionPicker).bind(regionPicker, cityPicker);

7. Draw Your Dashboard

Call the draw() method on the dashboard instance to render the entire dashboard. The draw() method takes only one parameter: the
DataTable (or DataView) that powers the dashboard.

You should call draw() every time you change the composition of the dashboard (for example by adding new controls or charts to it) or
you change the overall DataTable that powers it.

The dashboard instance fires a ready event whenever draw() terminates drawing all the controls and charts that are part of it. An
error event is fired if any of the managed controls or chart fails to draw. To learn more about handling events, see Handling Events
(/chart/interactive/docs/events).

You should listen for the ready event before you try to change the dashboard composition or draw it again.

8. Programmatic Changes After Draw

Once the dashboard completes the initial draw() it will be /ive and respond automatically to any action you perform on it (such as
changing the selected range of a control slider that is part of the dashboard).

If you need to programmatically alter the dashboard state, you can do so by operating directly on the ControlWrapper and
ChartWrapper instances that are part of it. The rule of thumb is to perform any change you need directly on the specific
ControlWrapper (or ChartWrapper) instance: for example, change a control option or state via setOption() and setState()
respectively, and call its draw() method afterward. The dashboard will then update to match the requested changes.

The following example shows such a case.

https://developers-dot-devsite-v2-prod.appspot.com/chart/interactive/docs/gallery/controls.html 7122

https://developers-dot-devsite-v2-prod.appspot.com/chart/interactive/docs/events

10/8/21, 6:57 AM Controls and Dashboards | Charts | Google Developers

Donuts eaten

1.088 @s.0

Select range [2, 5]

Make the pie chart 3D

Code it yourself on JSFiddle

Full\Aeb-Rage
(#full-web-page)

<html>
<head>

<script type="text/javascript" src="https://www.gstatic.com/charts/loader.js"></script>

<script type="text/javascript">
google.charts.load('current', {'packages':['corechart', 'controls']});
google.charts.setOnLoadCallback(drawStuff);

function drawStuff() {

var dashboard = new google.visualization.Dashboard(
document.getElementById('programmatic_dashboard_div'));

// We omit "var" so that programmaticSlider is visible to changeRange.

var programmaticSlider = new google.visualization.ControlWrapper ({
‘controlType': 'NumberRangeFilter',

'containerId': 'programmatic_control_div'
'options': {
'filterColumnLabel': 'Donuts eaten'
'ui': {'labelStacking': 'vertical'}
}
3
var programmaticChart = new google.visualization.ChartWrapper ({
‘chartType': 'PieChart’,
'containerId': 'programmatic_chart_div',
"options': {
'width': 300,
"height': 300,
'legend': 'none’,
‘chartArea': {'left': 15, 'top': 15, 'right': @, 'bottom': 0}
'pieSliceText': 'value'
}
3
var data = google.visualization.arrayToDataTable([
['Name' 'Donnts eaten'],
<

https://developers-dot-devsite-v2-prod.appspot.com/chart/interactive/docs/gallery/controls.html

8/22

10/8/21, 6:57 AM Controls and Dashboards | Charts | Google Developers

dashboard.bind(programmaticSlider, programmaticChart);
dashboard.draw(data) ;

changeRange = function() {
programmaticSlider.setState({'lowValue': 2, 'highValue': 5});
programmaticSlider.draw();

b

changeOptions = function() {
programmaticChart.setOption('is3D', true);
programmaticChart.draw();

iE;

</script>
</head>
<body>
<div id="programmatic_dashboard_div" style="border: 1px solid #ccc">
<table class="columns">
<tr>
<td>
<div id="programmatic_control_div" style="padding-left: 2em; min-width: 250px"></div>
<div>
<button style="margin: 1em 1em lem 2em" onclick="changeRange();">
Select range [2, 5]
</button>

<button style="margin: lem 1em 1em 2em
Make the pie chart 3D
</button>
</div>
</td>
<td>
<div id="programmatic_chart_div"></div>
</td>
</tr>
</table>
</div>
</body>
</html>

onclick="changeOptions();">

API Reference

This section lists the objects exposed by the Controls and Dashboards API, and the standard methods exposed by all controls.

Dashboard

Represents a collection of collaborating controls and charts that share the same underlying data.

Canctriintar

https://developers-dot-devsite-v2-prod.appspot.com/chart/interactive/docs/gallery/controls.html 9/22

10/8/21, 6:57 AM Controls and Dashboards | Charts | Google Developers

Dashboard(containerRef)

containerRef

A reference to a valid container element on the page that will hold the dashboard contents.

Methods

Dashboard exposes the following methods:

Method Return Type Description

bind(controls, google.visualization.DashboardBinds one or more Controls to one or more other dashboard participants (either charts or other

charts) controls), so that all of the latter are redrawn whenever any of the former collects a programmatic or
user interaction that affects the data managed by the dashboard. Returns the dashboard instance
itself for chaining multiple bind() calls together.

« controls - Either a single one or an array of google.visualization.ControlWrapper
instances defining the controls to bind.

« charts - Either a single one or an array of google.visualization.ChartWrapper instances
defining the charts the that will be driven the by the controls.

draw(dataTable)None Draws the dashboard.

« dataTable - Any one of the following: a DataTable object; a DataView object; a JSON
representation of a DataTable; or an array following the syntax of
google.visualization.arrayToDataTable(),
(/chart/interactive/docs/reference#google.visualization.arraytodatatable).

getSelection() Array of objects Returns an array of the selected visual entities of the charts in the dashboard. The getSelection()
method, when called on the dashboard, returns an aggregate of all of the selections made on all of the
charts within it, allowing for the use of a single reference when working with chart selections.

Note: Event listeners for the select event (/chart/interactive/docs/events#The_Select_Event) still need
to be attached to each chart to which you wish to listen.

Extended description (/chart/interactive/docs/reference#visgetselection)

Events

The Dashboard object throws the following events. Note that you must call Dashboard.draw() before any events will be thrown.

Name Description Properties

errorFired when an error occurs when attempting to render the dashboard. One or more of the controls and charts that are part of the id,
dashboard may have failed rendering. message

readyThe dashboard has completed drawing and is ready to accept changes. All the controls and charts that are part of the dashboard are None

ready for external method call and user interaction. If you want to change the dashboard (or the data it displays) after you draw it, you
should set up a listener for this event before you call the draw method, and then apply your changes only after the event was fired.

The ready event will also fire:

« after the completion of a dashboard refresh triggered by a user or programmatic interaction with one of the controls,

« after a programmatic call to the draw() method of any chart part of the dashboard.

https://developers-dot-devsite-v2-prod.appspot.com/chart/interactive/docs/gallery/controls.html

10/22

https://developers-dot-devsite-v2-prod.appspot.com/chart/interactive/docs/reference#google.visualization.arraytodatatable
https://developers-dot-devsite-v2-prod.appspot.com/chart/interactive/docs/events#The_Select_Event
https://developers-dot-devsite-v2-prod.appspot.com/chart/interactive/docs/reference#visgetselection

10/8/21, 6:57 AM Controls and Dashboards | Charts | Google Developers

A ControlWrapper object is a wrapper around a JSON representation of a configured control instance. The class exposes convenience
methods for defining a dashboard control, drawing it and programmatically changing its state.

Constructor

ControlWrapper (opt_spec)

opt_spec

[Optional] - Either a JSON object defining the control, or a serialized string version of that object. The supported properties of the
JSON object are shown in the following table. If not specified, you must set all the appropriate properties using the set... methods
exposed by ControlWrapper.

Property Type RequiredDefaultDescription

controlTypeString Requirednone The class name of the control. The google.visualization package name can be omitted for Google controls.
Examples: CategoryFilter, NumberRangeFilter.

containerld String Requirednone The ID of the DOM element on your page that will host the control.

options ObjectOptional none An object describing the options for the control. You can use either JavaScript literal notation, or provide a handle to the
object. Example: "options": {"filterColumnLabel": "Age", "minValue": 10, "maxValue": 80}

state ObjectOptional none An object describing the state of the control. The state collects all the variables that the user operating the control can
affect. For example, a range slider state can be described in term of the positions that the low and high thumb of the
slider occupy. You can use either Javascript literal notation, or provide a handle to the object.Example: "state" :
{"lowValue": 20, "highValue": 50}

Methods

ControlWrapper exposes the following additional methods:

Method Return Type Description

draw() None Draws the control. Normally the dashboard holding the control takes care of drawing it. You should
call draw() to force programmatic redraws of the control after you change any of its other
settings, like options or state.

toJSON() String Returns a string version of the JSON representation of the control.

clone() ControlWrapper Returns a deep copy of the control wrapper.
(#controlwrapperobject)

getControlType() String The class name of the control. If this is a Google control, the name will not be qualified with
google.visualization. So, for example, if this were a CategoryFilter control, it would return
"CategoryFilter" rather than "google.visualization.CategoryFilter".

getControlName() String Returns the control name assigned by setControlName().

getControl() Control object reference Returns a reference to the control created by this ControlWrapper. This will return null until after
you have called draw() on the ControlWrapper object (or on the dashboard holding it), and it
throws a ready event. The returned object only exposes one method: resetControl(), which
resets the control state to the one it was initialized with (like resetting an HTML form element).

getContainerId() String The ID of the control's DOM container element.
getOption(key, Any type Returns the specified control option value

nnt Aafaul+ wval)
« key - The name of the option to retrieve. May be a qualified name, such as 'vAxis.title'.

https://developers-dot-devsite-v2-prod.appspot.com/chart/interactive/docs/gallery/controls.html 11/22

10/8/21, 6:57 AM Controls and Dashboards | Charts | Google Developers

« opt_default_value [Optional] - If the specified value is undefined or null, this value will be

returned.
getOptions() Object Returns the options object for this control.
getState() Object Returns the control state.
setControlType(type) None Sets the control type. Pass in the class name of the control to instantiate. If this is a Google

control, do not qualify it with google.visualization. So, for example, for a range slider over a
numeric column, pass in "NumberRangeFilter".

setControlName (name) None Sets an arbitrary name for the control. This is not shown anywhere on the control, but is for your
reference only.

setContainerId(id) None Sets the ID of the containing DOM element for the control.

setOption(key, value) None Sets a single control option value, where key is the option name and value is the value. To unset an
option, pass in null for the value. Note that key may be a qualified name, such as
'vAxis.title'.

setOptions(options_obj)None Sets a complete options object for a control.

setState(state_obj) None Sets the control state. The state collects all the variables that the user operating the control can
affect. For example, a range slider state can be described in term of the positions that the low and
high thumb of the slider occupy.

Events

The ControlWrapper object throws the following events. Note that you must call ControlWrapper.draw() (or draw the dashboard
holding the control) before any events will be thrown.

Name Description Properties

error Fired when an error occurs when attempting to render the control. id,
message

ready The control is ready to accept user interaction and for external method calls. If you want to interact with the control, and call None

methods after you draw it, you should set up a listener for this event before you call the draw method, and call them only after the
event was fired. Alternatively, you can listen for a ready event on the dashboard holding the control and call control methods
only after the event was fired.

statechangeFired when the user interacts with the control, affecting its state. For example, a statechange event will fire whenever you move None
the thumbs of a range slider control. To retrieve an updated control state after the event fired, call
ControlWrapper.getState().

(#chartwrapperobject)ChaI’tWrapper

Refer to google.visualization.ChartWrapper (/chart/interactive/docs/reference#chartwrapperobject) documentation in the visualizations'
API reference section.

The following notes apply when using a ChartWrapper as part of a dashboard:

¢ Do not set the dataTable, query, dataSourceUrl and refreshInterval attributes explicitly. The dashboard holding the chart
takes care of feeding it the data it needs.

¢ Do set its view attribute to declare which columns, out of all the ones present in the dataTable given to the dashboard, are
relevant for the chart, as shown in Create Control and Chart Instances (#create_controls).

VR SR PR o S |

https://developers-dot-devsite-v2-prod.appspot.com/chart/interactive/docs/gallery/controls.html 12/22

https://developers-dot-devsite-v2-prod.appspot.com/chart/interactive/docs/reference#chartwrapperobject

10/8/21, 6:57 AM

Controls and Dashboards | Charts | Google Developers

Filters are graphical elements that people can use to interactively select which data is displayed on your chart. This section describes
the Google Chart filters: CategoryFilter, ChartRangeFilter, DateRangeFilter, NumberRangeFilter, and StringFilter.

You can use any of them as a parameter to ControlWrapper.setControlType().

n describing options, the dot notation is used to describe nested object attributes. For example an option named 'ui.label' should be declared in an optic

asvar options = {"ui": {"label": "someLabelValue"} };

CategoryfFilter

A picker to choose one or more between a set of defined values.

Metric - Choose a value... ™

x CPU
x Memory
State
Name Type
selectedValuesArray of none
objects or
primitive types
Options
Name

filterColumnindex

filterColumnLabel

values

DefaultDescription

Type Default
number none
string none
Array auto
slean false

https://developers-dot-devsite-v2-prod.appspot.com/chart/interactive/docs/gallery/controls.html

The set of values currently selected. The selected values must be a set of the overall selectable values defined by the
values option (any extraneous one will be ignored). If the CategoryFilter does not allow multiple choice, only
the first value of the array is retained.

Description

The column of the datatable the filter
should operate upon. It is mandatory
to provide either this option or
filterColumnLabel. If both

present, this option takes precedence.

The label of the column the filter
should operate upon. It is mandatory
to provide either this option or
filterColumnIndex. If both
present, filterColumnIndex takes
precedence.

List of values to choose from. If an
array of Objects is used, they should
have a suitable toString()
representation for display to the user.
If null or undefined, the list of values
will be automatically computed from
the values present in the DataTable
column this control operates on.

When populating the list of selectable

13/22

10/8/21, 6:57 AM

ui

ui.caption

ui.sortValues

ui.selectedValuesLayout

ui.allowNone

ui.allowMultiple

ui.allowTyping

ui.label

ui.labelSeparator

ui.labelStackina

Object

string

boolean

string

boolean

boolean

boolean

string

string

string

Controls and Dashboards | Charts | Google Developers

null

'‘Choose a value...

true

‘aside’

true

true

true

auto

none

'horizontal'

https://developers-dot-devsite-v2-prod.appspot.com/chart/interactive/docs/gallery/controls.html

values automatically from the
DataTable column this filter operates
on, whether to use the actual cell
values or their formatted values.

An object with members to configure
various aspects of the control's Ul. To
specify properties of this object, you
can use object literal notation, as
shown here:

{label: 'Metric', labelSepar:

The caption to display inside the value
picker widget when no item is
selected.

Whether the values to choose from
should be sorted.

How to display selected values, when

multiple selection is allowed. Possible

values are:

« 'aside': selected values will
display in a single text line next to
the value picker widget,

« 'below': selected values will
display in a single text line below
the widget,

« 'belowWrapping': similar to
below, but entries that cannot fit in
the picker will wrap to a new line,

* 'belowStacked': selected
values will be displayed in a
column below the widget.

Whether the user is allowed not to
choose any value. If false the user
must choose at least one value from
the available ones. During control
initialization, if the option is set to
false and no selectedValues
state is given, the first value from the
avaiable ones is automatically seleted.

Whether multiple values can be
selected, rather than just one.

Whether the user is allowed to type in
a text field to narrow down the list of
possible choices (via an
autocompleter), or not.

The label to display next to the
category picker. If unspecified, the
label of the column the control
operates on will be used.

A separator string appended to the
label, to visually separate the label
from the category picker.

Whether the label should display
above (vertical stacking) or beside
(horizontal stacking) the category

14/22

10/8/21, 6:57 AM Controls and Dashboards | Charts | Google Developers

picker. Use either 'vertical' or

"horizontal'.
ui.cssClass string 'google-visualization-controls- The CSS class to assign to the control,
categoryfilter' for custom styling.

ChartRangeFilter

A slider with two thumbs superimposed onto a chart, to select a range of values from the continuous axis
(/chart/interactive/docs/customizing_axes#Discrete_vs_Continuous) of the chart.

000

500 I. |:| l D:Fr‘hlj | =]

i
000 Il [][I l DD[] I.
500 D
ol DD*II

Feb 9, 2012 Feb 14,2012 Feb 19, 2012 Feb 24, 2012 Feb 29, 2012 Mar 5, 2012 Mar 10, 2012 Mar 15, 2012 Mar 20, 2012

9 16 Fet(Z(MZ\S 13 20 March,2012 5 12 19 April 2012 9 16 23

State

Name Type Default Description

range.start number, date, datetime or timeofday Range start value The start of the selected range, inclusive.

range.end number, date, datetime or timeofday Range end value The end of the selected range, inclusive.

Options

Name Type Default Description

filterColumnindex number none The index of the column in the data

table the filter operates on. It is
mandatory to provide either this
option or filterColumnLabel. If
both are present, this option takes
precedence.

Note that it only makes sense to
specify an index of a domain
(/chart/interactive/docs/roles#whatr
olesavailable)

column that is embodied in the
continuous axis of the chart drawn
inside the control.

ng none The label of the column of the data
< table the filter operates on. It is
mandatory to provide either this

https://developers-dot-devsite-v2-prod.appspot.com/chart/interactive/docs/gallery/controls.html 15/22

https://developers-dot-devsite-v2-prod.appspot.com/chart/interactive/docs/customizing_axes#Discrete_vs_Continuous
https://developers-dot-devsite-v2-prod.appspot.com/chart/interactive/docs/roles#whatrolesavailable

10/8/21, 6:57 AM

ui Object null

ui.chartType string ‘ComboChart’

ui.chartOptions Object {
"enableInteractivity':

'chartArea': {'height':
'legend': {'position’:
"hAxis': {'textPosition':

"VAxis': {
'textPosition': 'none',
'gridlines': {'color':
}
}
ui.chartView Object or string (serialized Object) null

ui.minRangeSize number

pixel

https://developers-dot-devsite-v2-prod.appspot.com/chart/interactive/docs/gallery/controls.html

Controls and Dashboards | Charts | Google Developers

option or filterColumnIndex. If
both are present,
filterColumnIndex takes
precedence.

Note that it only makes sense to
specify an label of a domain
(/chart/interactive/docs/roles#whatr
olesavailable)

column that is embodied in the
continuous axis of the chart drawn
inside the control.

An object with members to configure
various aspects of the control's Ul. To
specify properties of this object, you
can use object literal notation, as
shown here:

{chartType: 'ScatterChart', ¢

The type of the chart drawn inside the
control.

Can be one of: 'AreaChart’, 'LineChart’,
'ComboChart' or 'ScatterChart'.

The configuration options of the chart

falsedrawn inside the control. Allows the

' 1@esame level of configuration as any
' nonechart in the dashboard, and complies
" iwith the same format as accepted by

ChartWrapper.setOptions()

(/chart/interactive/docs/reference#c
' norhartwrapperobject)

You can specify additional options or
override the default ones (note that
the defaults have been carefully
chosen for optimal appearance,
though).

Specification of the view to apply to
the data table used to draw the chart
inside the control. Allows the same
level of configuration as any chart in
the dashboard, and complies with the
same format as accepted by
ChartWrapper.setView()
(/chart/interactive/docs/reference#c
hartwrapperobject)
. If not specified, the data table itself is
used to draw the chart.

Please note that the horizontal axis of
the drawn chart must be continuous
(/chart/interactive/docs/customizing
_axes#Discrete_vs_Continuous)

, so be careful to specify
ui.chartView accordingly.

Data value difference interpreted as 1 The minimum selectable range size

(range.end - range.start),
specified in data value units. For a
numeric axis, it is a number (not
necessarily an integer). For a date,
datetime or timeofday axis, it is an

16/22

https://developers-dot-devsite-v2-prod.appspot.com/chart/interactive/docs/roles#whatrolesavailable
https://developers-dot-devsite-v2-prod.appspot.com/chart/interactive/docs/reference#chartwrapperobject
https://developers-dot-devsite-v2-prod.appspot.com/chart/interactive/docs/reference#chartwrapperobject
https://developers-dot-devsite-v2-prod.appspot.com/chart/interactive/docs/customizing_axes#Discrete_vs_Continuous

10/8/21, 6:57 AM

ui.snapToData

Events

Controls and Dashboards | Charts | Google Developers

boolean false

Additions to ControlWrapper (#controlwrapperobject) events:

Name Description

statechangeSame as documented for every ControlWrapper, only has an extra boolean property, inProgress, that specifies whether the
state is currently being changed (either one of the thumbs or the range itself is being dragged).

DateRangeFilter

A dual-valued slider for selecting ranges of dates.

Try moving the slider to change which rows are shown in the table below.

Year [|

8

Extrasolar planet
Gamma Cephei Ab
HD 114762 b
PSR B1257+12
51 Pegasi b
47 Ursae Majoris b
Upsilon Andromedae
Gliese 876 b
HD 209458 b
lota Draconis b
PSR B1620-26 b
2M1207 b
Mu Arae ¢
TrES-1 and HD 209458 b
OGLE-2005-BLG-390Lb

Gliese 581 ¢ Inhospitable due to runaway greenhouse effect
Fomalhaut b First exoplanet directly imaged by optical telescope
GJ 1214 b Might be 75% water and 25% rock
HD 10180 Seven planets orbiting a sun-like star
55 Cancri e Orbital period of just 0.73 days
Alpha Centauri Bb Earth-mass planet in the star system closest to ours
PH2 b Potentially habitable Jupiter-sized planet
Kepler-69¢ First potentially habitable Earth-sized planet orbiting a sun-sized star
State
Name Type Default Description
lowValue number none The lower extent of the selected range, inclusive.
highValue number none The higher extent of the selected range, inclusive.

lowThumbAtMinimum booleannone

<

Comment
Deduced from radial velocity variations of the star Gamma Cephei
At least 11 times the mass of Jupiter
First confirmed discovery of an extrasolar planet
Hot Jupiter with a 4.2 day orbit
First long-period planet discovered
First multiple planetary system around a main sequence star
First planet found orbiting a red dwarf
First exoplanet seen transiting its parent star
Provided evidence that planets can exist around giant stars
12.7 billion year old planet orbiting a binary star system
First planet found orbiting a brown dwarf
Hot Neptune
First detection of light from exoplanets
Detected used gravitational microlensing

integer that specifies the difference in

If true, range thumbs are snapped to
the nearest data points. In this case,
the end points of the range returned by
getState() are necessarily values in

Properties

Year
Jul 13, 1988
May 4, 1989
Jan 22, 1992
Oct 6, 1995
Jan 17, 1996
Aug 12, 1996
Jun 23, 1998
Nov 5, 1999
Jan 8, 2002
Jul 10, 2003
Jul 22, 2004
Aug 25, 2004
Mar 22, 2005
Feb 25, 2006
Apr 4, 2007
Nov 13, 2008
Dec 16, 2009
Aug 24, 2010
Apr 27, 2011
Oct 16, 2012
Jan 13, 2013
Apr 18, 2013

Whether the lower thumb of the slider is locked at the minimum allowed range. If set, overrides lowValue.

Vhether the higher thumb of the slider is locked at the maximum allowed range. If set, overrides highValue.

https://developers-dot-devsite-v2-prod.appspot.com/chart/interactive/docs/gallery/controls.html

inProgress

17/22

10/8/21, 6:57 AM

Options

Name

filterColumnindex

filterColumnLabel

minValue

maxValue

ui

ui.format

ui.step

ui.ticks

ui.unitincrement

ui.blockincrement

https://developers-dot-devsite-v2-prod.appspot.com/chart/interactive/docs/gallery/controls.html

Type

number

string

Date

Date

Object

Object

string

number

string

number

slean

Controls and Dashboards | Charts | Google Developers

Default

none

none

auto

auto

null

none

day

auto

10

true

Description

The column of the datatable the filter
should operate upon. It is mandatory
to provide either this option or
filterColumnLabel. If both
present, this option takes precedence.
Must point to a column with type
number.

The label of the column the filter
should operate upon. It is mandatory
to provide either this option or
filterColumnIndex. If both
present, filterColumnIndex takes
precedence. Must point to a column
with type number.

Minimum allowed value for the range
lower extent. If undefined, the value
will be inferred from the contents of
the DataTable managed by the control.

Maximum allowed value for the range
higher extent. If undefined, the value
will be inferred from the contents of
the DataTable managed by the control.

An object with members to configure
various aspects of the control's Ul. To
specify properties of this object, you
can use object literal notation, as
shown here:

{label: 'Age', labelSeparator

How to represent the date as a string.
Accepts any valid date format
(https://developers.google.com/chart
/interactive/docs/reference?
hl=en#dateformatter)

The minimum possible change when
dragging the slider thumbs: can be any
time unit up to "day". ("month" and
"year" aren't yet supported.)

The number of ticks (fixed positions in
the range bar) the slider thumbs can
occupy.

The amount to increment for unit
increments of the range extents. A
unit increment is equivalent to using
the arrow keys to move a slider thumb.

The amount to increment for block
increments of the range extents. A
block increment is equivalent to using
the pgUp and pgDown keys to move
the slider thumbs.

Whether to have labels next to the

18/22

https://developers.google.com/chart/interactive/docs/reference?hl=en#dateformatter

10/8/21, 6:57 AM Controls and Dashboards | Charts | Google Developers

slider displaying extents of the
selected range.

ui.orientation string 'horizontal' The slider orientation. Either
"horizontal' or 'vertical'.

ui.label string auto The label to display next to the slider.
If unspecified, the label of the column
the control operates on will be used.

ui.labelSeparator string none A separator string appended to the
label, to visually separate the label
from the slider.

ui.labelStacking string 'horizontal' Whether the label should display
above (vertical stacking) or beside
(horizontal stacking) the slider. Use
either 'vertical' or

"horizontal'.
ui.cssClass string 'google-visualization-controls- The CSS class to assign to the control,
rangefilter' for custom styling.

NumberRangeFilter

A dual-valued slider for selecting ranges of numeric values.

Age 0.0 #60.0 Michael
Elisa
Robert
John
Jessica
Aaron
Margareth
Miranda
State
Name Type Default Description
lowValue number none The lower extent of the selected range, inclusive.
highValue number none The higher extent of the selected range, inclusive.

lowThumbAtMinimum booleannone Whether the lower thumb of the slider is locked at the minimum allowed range. If set, overrides lowValue.

highThumbAtMaximum booleannone Whether the higher thumb of the slider is locked at the maximum allowed range. If set, overrides highValue.

Options

e Default Description

https://developers-dot-devsite-v2-prod.appspot.com/chart/interactive/docs/gallery/controls.html 19/22

10/8/21, 6:57 AM

filterColumnindex

filterColumnLabel

minValue

maxValue

ui

ui.format

ui.step

ui.ticks

ui.unitincrement

ui.blockincrement

ui.showRangeValues

number

string

number

number

Object

Object

number

number

number

number

boolean

““ng

none

none

auto

auto

null

none

1, or computed from ticks if defined

auto

10

true

'horizontal'

https://developers-dot-devsite-v2-prod.appspot.com/chart/interactive/docs/gallery/controls.html

Controls and Dashboards | Charts | Google Developers

The column of the datatable the filter
should operate upon. It is mandatory
to provide either this option or
filterColumnLabel. If both
present, this option takes precedence.
Must point to a column with type
number.

The label of the column the filter
should operate upon. It is mandatory
to provide either this option or
filterColumnIndex. If both
present, filterColumnIndex takes
precedence. Must point to a column
with type number.

Minimum allowed value for the range
lower extent. If undefined, the value
will be inferred from the contents of
the DataTable managed by the control.

Maximum allowed value for the range
higher extent. If undefined, the value
will be inferred from the contents of
the DataTable managed by the control.

An object with members to configure
various aspects of the control's Ul. To
specify properties of this object, you
can use object literal notation, as
shown here:

{label: 'Age', labelSeparator

How to represent the number as a
string. Accepts any valid number
format
(https://developers.google.com/chart
/interactive/docs/reference?
hl=en#numberformatter)

The minimum possible change when
dragging the slider thumbs.

The number of ticks (fixed positions in
the range bar) the slider thumbs can
occupy.

The amount to increment for unit
increments of the range extents. A
unit increment is equivalent to using
the arrow keys to move a slider thumb.

The amount to increment for block
increments of the range extents. A
block increment is equivalent to using
the pgUp and pgDown keys to move
the slider thumbs.

Whether to have labels next to the
slider displaying extents of the
selected range.

The slider orientation. Either
"horizontal' or 'vertical'.

20/22

https://developers.google.com/chart/interactive/docs/reference?hl=en#numberformatter

10/8/21, 6:57 AM

ui.label string
ui.labelSeparator string
ui.labelStacking string
ui.cssClass string
StringFilter

A simple text input field that lets you filter data via string matching.
below to John and Jessica.

Name ‘

Controls and Dashboards | Charts | Google Developers

auto The label to display next to the slider.
If unspecified, the label of the column

the control operates on will be used.

none A separator string appended to the
label, to visually separate the label

from the slider.

'horizontal' Whether the label should display
above (vertical stacking) or beside
(horizontal stacking) the slider. Use
either 'vertical' or

"horizontal'.

'google-visualization-controls-
rangefilter'

The CSS class to assign to the control,
for custom styling.

It updates after every keypress: try typing j to narrow the table

Name Age
Michael 12
Elisa 20
Robert 7
John 54
Jessica 22
Aaron 3
Margareth 42
Miranda 3
State
Name Type Default Description
value string or object none The text currently entered in the control input field.
Options
Name Type Default Description
filterColumnindex number none The column of the datatable the filter
should operate upon. It is mandatory
to provide either this option or
filterColumnLabel. If both
present, this option takes precedence.
filterColumnLabel string none The label of the column the filter
should operate upon. It is mandatory
to provide either this option or
filterColumnIndex. If both
present, filterColumnIndex takes
precedence.
matchType string ‘prefix’ Whether the control should match

exact values only (' exact'), prefixes
starting from the beginning of the
value ('prefix"') or any substring
("any’).

https://developers-dot-devsite-v2-prod.appspot.com/chart/interactive/docs/gallery/controls.html

21/22

10/8/21, 6:57 AM

caseSensitive

useFormattedValue

ui

ui.realtimeTrigger

ui.label

ui.labelSeparator

ui.labelStacking

ui.cssClass

boolean

boolean

Object

boolean

string

string

string

string

Controls and Dashboards | Charts | Google Developers

false

false

null

true

auto

none

'horizontal'

'google-visualization-controls-
stringfilter'

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License
(https://creativecommons.org/licenses/by/4.0/), and code samples are licensed under the Apache 2.0 License
(https://www.apache.org/licenses/LICENSE-2.0). For details, see the Google Developers Site Policies (https://developers.google.com/site-policies). Java is a
registered trademark of Oracle and/or its affiliates.

Last updated 2020-07-07 UTC.

https://developers-dot-devsite-v2-prod.appspot.com/chart/interactive/docs/gallery/controls.html

Whether matching should be case
sensitive or not.

Whether the control should match
against cell formatted values or againt
actual values.

An object with members to configure
various aspects of the control's Ul. To
specify properties of this object, you
can use object literal notation, as
shown here:

{label: 'Name', labelSeparatc

Whether the control should match any
time a key is pressed or only when the
input field '‘changes' (loss of focus or
pressing the Enter key).

The label to display next to the input
field. If unspecified, the label of the
column the control operates on will be
used.

A separator string appended to the
label, to visually separate the label
from the input field.

Whether the label should display
above (vertical stacking) or beside
(horizontal stacking) the input field.
Use either 'vertical' or
"horizontal'.

The CSS class to assign to the control,
for custom styling.

22/22

https://creativecommons.org/licenses/by/4.0/
https://www.apache.org/licenses/LICENSE-2.0
https://developers.google.com/site-policies

